Extensions 1→N→G→Q→1 with N=C42.C4 and Q=C2

Direct product G=N×Q with N=C42.C4 and Q=C2
dρLabelID
C2×C42.C432C2xC4^2.C4128,862

Semidirect products G=N:Q with N=C42.C4 and Q=C2
extensionφ:Q→Out NdρLabelID
C42.C41C2 = C42.15D4φ: C2/C1C2 ⊆ Out C42.C4168+C4^2.C4:1C2128,934
C42.C42C2 = C42.16D4φ: C2/C1C2 ⊆ Out C42.C4328-C4^2.C4:2C2128,935
C42.C43C2 = C42.17D4φ: C2/C1C2 ⊆ Out C42.C4164C4^2.C4:3C2128,936
C42.C44C2 = C42.2D4φ: C2/C1C2 ⊆ Out C42.C4164C4^2.C4:4C2128,135
C42.C45C2 = C8⋊C4⋊C4φ: C2/C1C2 ⊆ Out C42.C4168+C4^2.C4:5C2128,138
C42.C46C2 = C4⋊Q8.C4φ: C2/C1C2 ⊆ Out C42.C4328-C4^2.C4:6C2128,865
C42.C47C2 = C41D4.C4φ: C2/C1C2 ⊆ Out C42.C4168+C4^2.C4:7C2128,866
C42.C48C2 = (C2×D4).135D4φ: trivial image164C4^2.C4:8C2128,864

Non-split extensions G=N.Q with N=C42.C4 and Q=C2
extensionφ:Q→Out NdρLabelID
C42.C4.1C2 = (C2×D4).D4φ: C2/C1C2 ⊆ Out C42.C4328-C4^2.C4.1C2128,139
C42.C4.2C2 = (C4×C8)⋊C4φ: C2/C1C2 ⊆ Out C42.C4324C4^2.C4.2C2128,146

׿
×
𝔽